
The importance of Digital Health to catalyze effective public health policies

Roberto Tapia-Conyer, MD MSc Dr Sc

FUNDACIÓN Carlos Slim

Digital Health is a global trend

May 2018	Resolution on Digital Health
June 2018	Classification of Digital Health Interventions
March 2019	Creation of Department of Digital Health
April 2019	Recommendations for Digital Interventions

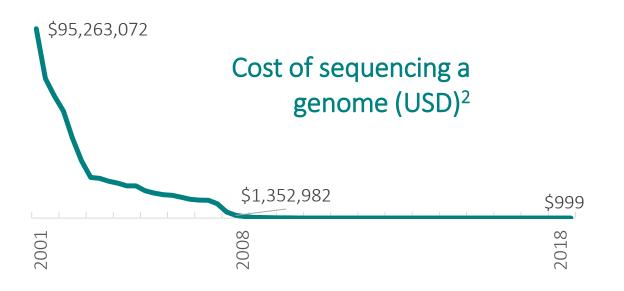
Feb 2017	Digital Health: A Call for Government Leadership and Cooperation between ICT and Health
Sept 2018	The Promise of Digital Health: Addressing NCDs to Accelerate Universal Health Coverage in LMCs

Jan 2019	Announcement
May 2019	Vol 1. Num 1.

The fourth Industrial Revolution and its expression in Digital Health

through the convergence of five trends that when combined,

catalyze the design, development, deployment and scale


of robust public health interventions.

Knowledge Generation | Advances of Science

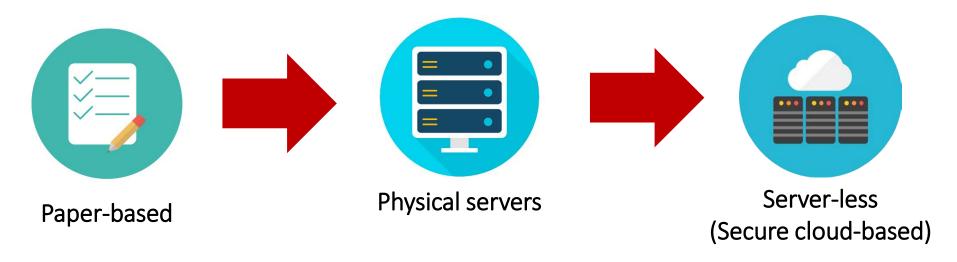
Medical knowledge doubles every:¹

- 50 years in 1950
- 7 years in 1980
- 3.5 years in 2010
- 73 days by 2020

17 years

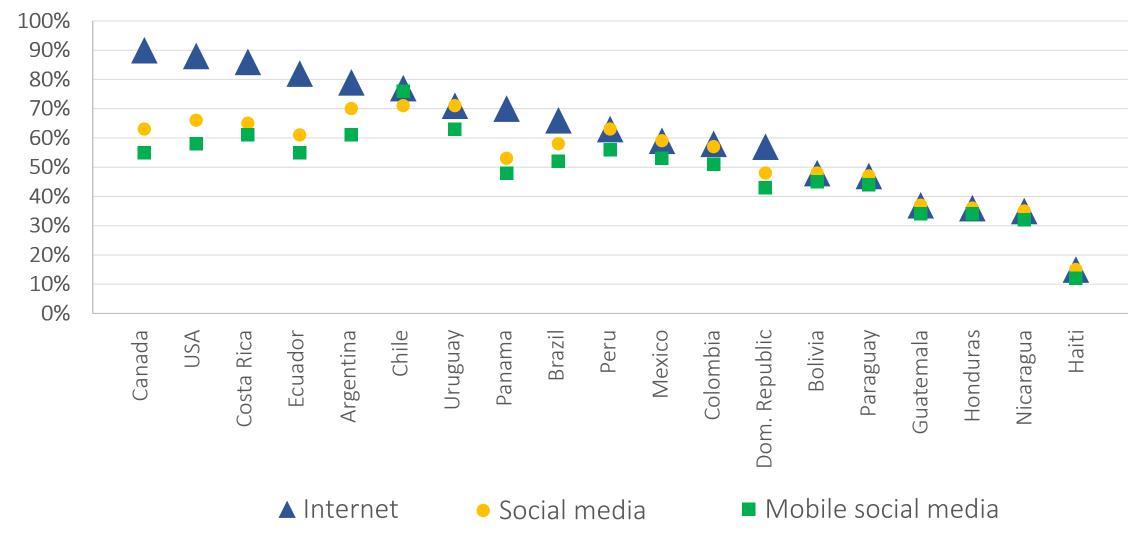
time to translate research into daily practice³

- 1. Densen, P. Challenges and Opportunities Facing Medical Education. Transaction of the American Clinical and Climatological Association (2011) Vol. 122.
- 2. DNA sequencing costs: data. (Available at https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)
- 3. Zoë Slote Morris et al. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med 2011 vol. 104 no. 12 510 520


Knowledge Generation | Advances of Science

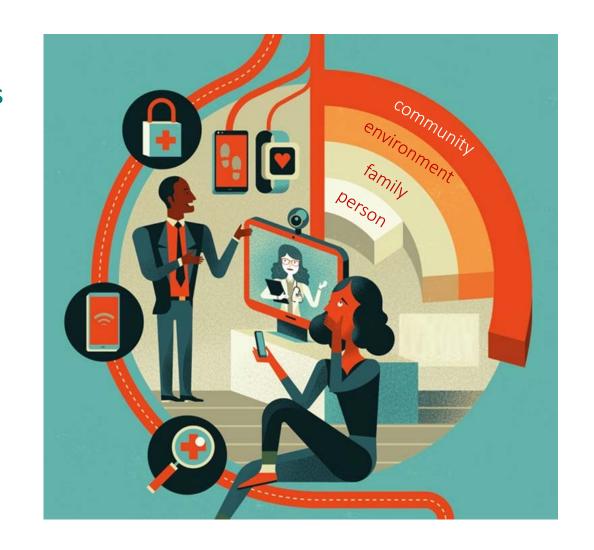
Impact in healthcare delivery:

- Better knowledge of the human being, from the molecule to the environment.
- Better knowledge of risk factors and their effect in human being's health status.
- Generation and continuous improvement of clinical guidelines.
- Enabler of novel preventive, therapeutic and rehabilitation interventions.
- Incorporation of these interventions as public policies.


Digital Platforms | Robust operation with instant transactionality

- Connected health information networks to enable lean health services between health providers.
- Data does not "travel", yet it is accessible to all the health providers connected.
- Robust digital platforms with decision making support algorithms.
- It enables personalized public health interventions.

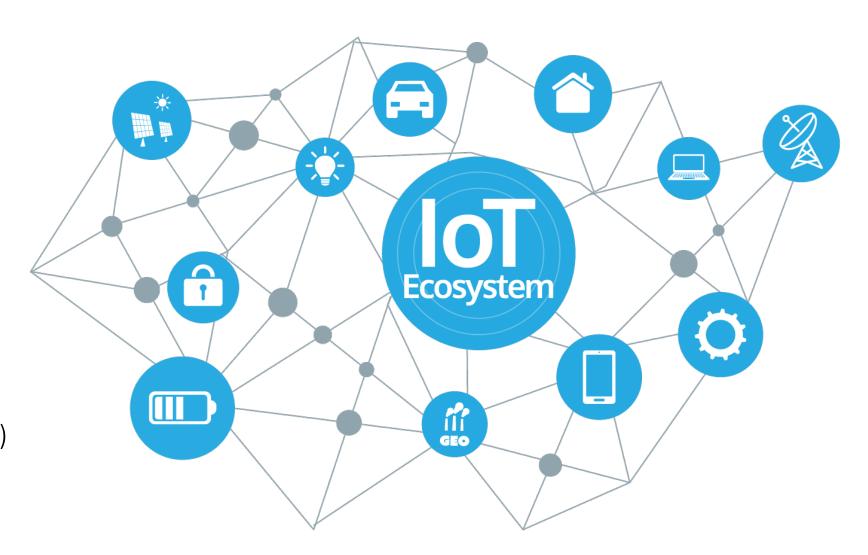
Connected communities | Massive adoption of internet and social media



Connected communities | Massive adoption of internet and social media

Point of convergence between health professionals with the person and her family

- From a passive recipient of healthcare services to an active user
- From a once-in-a-lifetime health
 intervention to a permanent interaction
- Strengthening of corresponsibility with an ubiquitous outreach



The world in the cloud | Sensors, wearables, devices and trackers

The imminent arrival of 5G

A revolution and an evolution in the use of networks

- Massive speed (50x faster)
- Multiple devices (IoT)
- Low latency (edge computing)

The world in the cloud | Sensors, wearables, devices and trackers

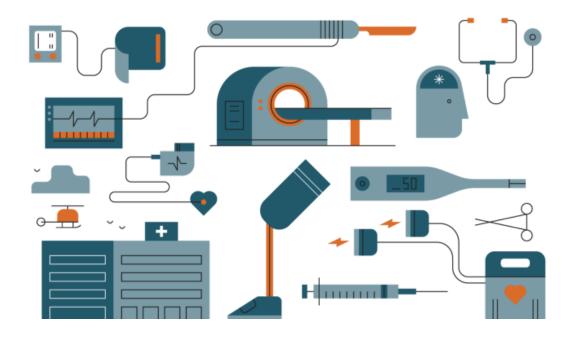
estimated number of sensors, devices or machines that will be interconnected worldwide

In Latin America:2

54% of private companies will increase their investment in ICT in 2019.

More than 50% of Latin America's GDP will be digitalized 380,000 billion USD to be invested between 2019 and 2022.

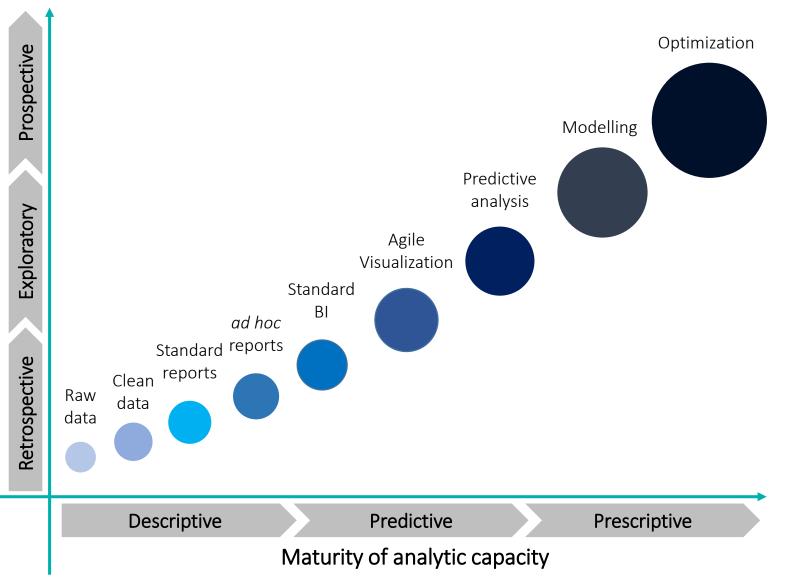
- 1. America Economia (available at https://tecno.americaeconomia.com/articulos/como-esta-el-panorama-del-iot-en-latinoamerica)
- 2. IDC Latin (available at http://cl.idclatin.com/releases/news.aspx?id=2440)


The world in the cloud | Sensors, wearables, devices and trackers

Transformation of patient care

- Remote monitoring of recently discharged patients with complications.
- Self-monitoring of risk factors at the household, work or school.
- Automatic transmission of information to expert systems to enable timely evidence-based decision making

US 29 billion


Latin America's medical equipment, device and consumable market in 2016

Public Health value

Big Data | Artificial Intelligence and Data Science

Health systems strengthening

Integration of robust
analytical methods with
impact in the person,
the patient and the
health system

WHO Guideline

Recommendations on Digital Interventions for Health System Strengthening

(http://bit.ly/2VjnJjk)

2.0 HEALTH WORKERS

4.0 DATA SERVICES

DAIA SERVICES							
4.1	DATA COLLECTION, MANAGEMENT, AND USE	4.2	DATA CODING	4-3	LOCATION MAPPING		
	Non-routine data	4.2.1	Parse unstructured data Into structured data	4.3.1	Map location of health facilities/structures		
4.1.1	collection and management	4.2.2	Merge, de-duplicate, and curate coded datasets or	4.3.2	Map location of health events		
4.1.2	Data storage and aggregation		terminologies Classify disease codes or	43-3	Map location of clients and households		
4.1.3	Data synthesis and visualization	4.2.3	cause of mortality	43-4	Map location of health worker		
4.1.4	Automated analysis of data to generate new information or predictions on future events		4.4	DATA EXCHANGE AND INTEROPERABILITY			
				4-4-1	Data exchange across systems		

THE LANCET Digital Health

(http://bit.ly/2GApEYw)

High-quality original research, comment, and correspondence contributing to promoting digital technologies in health practice worldwide

Some of the topics will include:

- Disease diagnostics, prediction and classification
- Nanobiotechnology and biomedical sensors
- Clinical genomics
- Precision medicine
- Digital Therapeutics
- Clinical engineering
- Healthcare systems engineering
- Digital clinical trials
- Artificial intelligence and machine learning
- Biomedical analytics

Six building blocks for sustainable digital health solutions

Strategy, leadership & governance

How can digital health be managed, coordinated and measured?

Policies & regulations

How can safety, quality, and ethical requirements be met?

Communication infrastructure & health platforms

What are the foundational ICT requirements of digital health?

Interoperability

How can data be exchanged between users, devices and applications?

Partnerships

How can solutions be delivered through partnerships?

Financing models

How can solutions be sustainably financed?

(http://bit.ly/2W1q3IQ)

Digital Health: A Call for Government Leadership and Cooperation between ICT and Health

February 2017

Digital Health Interventions that catalize effective public health policies

34

public policy interventions that rely on digital health

- Electronic Health Record
- Interoperability
- Screening for different diseases
- Community Health
- Health Promotion
- Continuous Medical Education
- Tracking of prescriptions

Digital Health catalyzes social inclusion,
enabling delivery of health services at the last mile,
at the basis of the pyramid where the most
vulnerable population resides.

Digital Health reduces the gap between scientific innovation and daily practice, enabling timely diagnosis, decision making support and the immediate application of public health interventions.

Digital Health enables patient corresponsibility, by facilitating the active participation of individuals in their healthcare management.

Therefore, Digital Health supports the reengineering of the health system, improving transparency, enabling accountability and hence securing better care.