

## **Alzheimer's disease and other dementias: The Global Burden of Disease Project**

Emma Nichols 5/7/2019



### **Outline**

- 1. Overview of the Global Burden of Disease Study
- 2. Case definition for Alzheimer's disease and other dementias
- 3. Recent results
- 4. Methodological challenges and ongoing work
  - Diagnostic heterogeneity and challenges related to case definition
  - Data sparsity and improvements using item response theory methods
  - Biases in vital registration data: previous solutions and future improvements

### **Outline**

### 1. Overview of the Global Burden of Disease Study

- 2. Case definition for Alzheimer's disease and other dementias
- **3.** Recent results
- 4. Methodological challenges and ongoing work
  - Diagnostic heterogeneity and challenges related to case definition
  - Data sparsity and improvements using item response theory methods
  - Biases in vital registration data: previous solutions and future improvements

### What is the Global Burden of Disease Study?

- A systematic, scientific effort to quantify the comparative magnitude of health loss from all major diseases, injuries, and risk factors by age, sex, and population, and over time.
- Fundamental premise: Policy should be informed by valid, reliable and timely data; poor quality data → poor decisions → lost opportunities to improve population health
- Key principles:
  - comprehensiveness;
  - informed estimates better than no estimates;
  - comparability (across locations, time, diseases, injuries, risk factors, age and sex)

### **GBD: standardized solution to global health measurement challenges**

Challenges:

- 1. Inconsistent coding and case definitions
- 2. No data
- 3. Conflicting data
- 4. Sampling and non-sampling measurement error

GBD solutions:

- 1. Quality review of all sources and corrections for garbage coding
- 2. Cross-walking different case definitions, diagnostic technologies, recall periods, etc., using statistical methods
- 3. Statistical methods to deal with missing data, inconsistent data, and measurement error

# Multiple metrics for health to facilitate different types of uses

#### 1) Traditional metrics:

Disease and injury prevalence and incidence, death numbers and rates.

#### 2) New metrics:

- Years Lived with Disability (YLD)
- Years of Life Lost (YLL)
- Disability Adjusted Life Years (DALYs)

DALY = YLL + YLD

YLL = years of life lost due to premature death YLD = years of life lost to disability

YLD: the number of years of life spent unwell, weighted according to the severity of illness or injury YLL: the number of years of life expectancy remaining at time of death

### **Over 20 years of innovation on GBD**



### **GBD Collaborator Network**

- GBD Collaborators are specialists in a range of topic areas related to the GBD enterprise, including: researchers, clinicians, epidemiologists, global health practitioners, demographers, health economists, and policymakers.
- Collaborators are critical throughout the process - from data analysis to policy uptake and impact – and participate in a range of ways.







### **Scope of Global Burden of Disease Today**

- Today covers 195 countries and territories from 1990 to present. Sub-national assessments for some countries including Brazil, China, Ethiopia, India, Indonesia, Iran, Japan, Kenya, Mexico, New Zealand, Norway, Russia, South Africa, Sweden, UK, and US
- 359 diseases and injuries, 3,228 clinical sequelae, 84 risk factors or clusters of risk factors.
- Time series from 1990 to most recent year updated annually
- Findings published in major medical journals, policy reports, and online data visualizations.





#### Visualization Tools

| lase                                                                                                            | Single Change                                                                                                            | HAQI                                                                         | Conte                                                       | st Ca                                               | 150                                                           |                                               | ×                              | Measure                                                                     | Add/Remove(2)                                                           |                                                               |  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|--|
| ocation                                                                                                         | Add/Remove (1)                                                                                                           | - X .                                                                        | Age                                                         | 4.6                                                 | t/Remove (I                                                   |                                               | × .*                           | Sex                                                                         | Add/Remove(1)                                                           | × *                                                           |  |
| lear                                                                                                            | Add/Remove (1)                                                                                                           | × *                                                                          | Metrie                                                      | Ad                                                  | t/Remove (1                                                   | 1)                                            | × 7                            | Cause                                                                       | Add/Remove (1)                                                          | × 7                                                           |  |
| Search                                                                                                          |                                                                                                                          |                                                                              |                                                             | Permalink                                           |                                                               |                                               |                                |                                                                             | Download CSV                                                            |                                                               |  |
| Terms d<br>Codeboo<br>Tools Ch                                                                                  | defined<br>ok<br>verview                                                                                                 | niai 660 2016                                                                | results from                                                | the GHDX.                                           |                                                               |                                               |                                | Filter Rows:                                                                |                                                                         |                                                               |  |
| Terms d<br>Codeboo<br>Tools On<br>measure                                                                       | defined<br>ok<br>verview                                                                                                 | <ul> <li>location</li> </ul>                                                 | sex                                                         | age                                                 | cause                                                         | metric                                        | year                           | Filter Rows:<br>val                                                         | upper                                                                   | lower                                                         |  |
| Terms d     Codebor     Tools Ov measure DALys (Dis                                                             | Jefined<br>ok<br>verview<br>iability-Adjusted Life Years)                                                                | location     Global                                                          | sex  <br>Both sexes                                         | age                                                 | cause  <br>All causes                                         | metric Number                                 | <b>year</b>                    | Filter Rows:<br>val<br>2,391,256,032.6                                      | upper                                                                   | lower<br>2,184,254,133.0                                      |  |
| Terms d<br>Codeboo<br>Tools On<br>neasure<br>IALYS (Dis                                                         | iefined<br>ok<br>verview<br>ability-Adjusted Life Years)<br>ability-Adjusted Life Years)                                 | location     Global     Global                                               | sex<br>Both sexes<br>Both sexes                             | age  <br>All Ages<br>All Ages                       | cause All causes                                              | metric  <br>Number<br>Percent                 | year  <br>2016<br>2016         | Filter Rows;<br>val<br>2,391,258,032.6<br>100.00                            | upper  <br>2,631,699,016.86<br>0 100.00                                 | lower<br>2,184,254,133.0<br>100.0                             |  |
| Terms d<br>Codebor<br>Tools On<br>Measure<br>DALYS (Dis<br>DALYS (Dis<br>DALYS (Dis                             | iefined<br>ok<br>verview<br>ability-Adjusted Life Years)<br>ability-Adjusted Life Years)<br>ability-Adjusted Life Years) | <ul> <li>location</li> <li>Global</li> <li>Global</li> <li>Global</li> </ul> | sex Doth sexes Both sexes Both sexes                        | age  <br>All Ages<br>All Ages<br>All Ages           | cause (<br>All causes<br>All causes<br>All causes             | metric  <br>Number  <br>Percent  <br>Rate     | year  <br>2016<br>2016<br>2016 | Filter Rows:<br>val<br>2,391,258,032.6<br>100.0<br>32,348.0                 | upper<br>3 2,631,699,016.86<br>0 100.00<br>3 25,600.63                  | lower<br>2,184,254,133.0<br>100.0<br>29,547.7                 |  |
| Terms d<br>Codebor<br>Tools On<br>Measure<br>DALYS (Dis<br>DALYS (Dis<br>DALYS (Dis<br>DALYS (Dis<br>DALYS (Dis | Iefined<br>Ok<br>verview<br>ability-Adjusted Life Years)<br>ability-Adjusted Life Years)                                 | location     Global     Global     Global     Global                         | sex<br>Both sexes<br>Both sexes<br>Both sexes<br>Both sexes | age<br>All Ages<br>All Ages<br>All Ages<br>All Ages | cause<br>All causes<br>All causes<br>All causes<br>All causes | metric<br>Number<br>Percent<br>Rate<br>Number | year 2016 2016 2016 2016       | Filter Rows;<br>val<br>2,391,256,032.6<br>100.0<br>32,348.0<br>54,698,579.8 | upper<br>2,631,699,016.86<br>0 100.00<br>0 25,500.63<br>5 55,514,692.20 | lower<br>2,184,254,133.6<br>100.0<br>29,547.7<br>54,028,682.5 |  |

### Database Query Tool

### **Outline**

- 1. Overview of the Global Burden of Disease Study
- 2. Case definition for Alzheimer's disease and other dementias
- 3. Recent results
- 4. Methodological challenges and ongoing work
  - Diagnostic heterogeneity and challenges related to case definition
  - Data sparsity and improvements using item response theory methods
  - Biases in vital registration data: previous solutions and future improvements

### **Dementia Case Definition**

The gold standard case definitions for dementia are the DSM-III, DSM-IV, DSM-V definitions or ICD definitions from representative surveys

- DSM-IV:
  - Multiple cognitive deficits manifested by both memory impairment and one of the following: aphasia, apraxia, agnosia, disturbance in executive functioning
  - Must cause significant impairment in occupational functioning and represent a significant decline.
  - Course is characterized by **gradual onset** and continuing cognitive decline
  - Cognitive deficits are not due to other psychiatric conditions
  - Deficits do not occur exclusively during the course of a delirium
- ICD definition is very similar, designed with input from DSM-IV work group

### **Conceptual Basis for Underlying Causes of Death**

- GBD attributes each death to a single underlying cause, in line with ICD principles
- Deaths are assigned to the underlying rather than immediate cause
- If someone has dementia, and because of this ends up bedridden and gets a UTI, which leads to death, this is a death due to dementia

#### Cause of death

|   | I.<br>Disease or condition directly<br>Leading to death*)                                                                       | a)<br>due to (or as a consequence of) |
|---|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|   | Antecedent causes<br>Morbid conditions, if any,<br>giving rise to the above cause,                                              | b)<br>due to (or as a consequence of) |
|   | stating the underlying condition last                                                                                           | c)<br>due to (or as a consequence of) |
| _ |                                                                                                                                 | d)                                    |
|   | II.<br>Other significant conditions<br>contributing to the death, but<br>not related to the disease or<br>conditions causing it |                                       |
|   |                                                                                                                                 |                                       |
|   | *This does not mean the mode of dying, e.g.                                                                                     | heart failure, resplratory failure.   |

It means the disease, injury, or complication that caused death.

### **Outline**

- 1. Overview of the Global Burden of Disease Study
- 2. Case definition for Alzheimer's disease and other dementias

### 3. Recent results

- 4. Methodological challenges and ongoing work
  - o Diagnostic heterogeneity and challenges related to case definition
  - Data sparsity and improvements using item response theory methods
  - Biases in vital registration data: previous solutions and future improvements

### Change in rank over time (DALYs) All Ages

Over 70



C IHME

#### **Counts and Age-Standardized Rates of DALYs due to Dementia Over Time** 35 -



IHME

### Patterns by Age and Sex (2017 Global Estimates)



16

### **Risk Factors by SDI Quintile (2017)**



● IHME | W UNIVERSITY of WASHINGTON

### **Outline**

- 1. Overview of the Global Burden of Disease Study
- 2. Case definition for Alzheimer's disease and other dementias
- 3. Recent results
- 4. Methodological challenges and ongoing work
  - Diagnostic heterogeneity and challenges related to case definition
  - Data sparsity and improvements using item response theory methods
  - Biases in vital registration data: previous solutions and future improvements

### **Case Definition**

The gold standard case definitions for dementia are the DSM-III, DSM-IV, DSM-V definitions or ICD definitions from representative surveys

- DSM-IV:
  - Multiple cognitive deficits manifested by both memory impairment and one of the following: aphasia, apraxia, agnosia, disturbance in executive functioning
  - Must cause significant impairment in occupational functioning and represent a significant decline.
  - Course is characterized by gradual onset and continuing cognitive decline
  - Cognitive deficits are not due to other psychiatric conditions
  - Deficits do not occur exclusively during the course of a delirium

### **Case Definition Continued**

- BUT ... This definition includes dementia cases where the dementia was caused by other GBD causes including HIV, stroke, Parkinson's disease, Down's syndrome and TBI
  - These cases need to be subtracted out to prevent double counting within the GBD cause hierarchy
- We need a method for the calculation of the proportion of cases that are due to these etiologies and subtract these from the total when we report on dementia in the neurological cause group
  - GBD will still also report on the total aggregated burden of dementia as well
- Proposed Method:
  - Review of the literature and meta-analyses on the proportion of each disease that results in dementia

## **Preliminary Evidence from ADAMS study**

### Analysis Plan:

- 1. Use data from the Aging Demographics and Memory study to fit logistic regression models predicting the outcome of dementia based on whether individuals have each condition
- 2. Calculate the relative risk of dementia given each exposure at various ages using predictions from the models
- **3.** Using data on relative risk and prevalence of each condition (from GBD), calculate the Population Attributable Fraction (PAF)
  - Proportion of the total dementia prevalence attributable to each condition
- 4. Multiply these fractions by dementia prevalence to get the amount of dementia prevalence to place under each cause

### Logistic Regression in the ADAMS study

Evaluate the relative risk of dementia given an exposure for each cause of dementia measured in ADAMS (Stroke, TBI, PD)

• For the stroke analysis we also tried controlling for potential confounders (BMI, smoking, blood pressure etc.) but none of these were significant in the expected direction

| Regression           | Condition Effect (SE) | Age Effect (SE) |
|----------------------|-----------------------|-----------------|
| Stroke<br>Regression | 4.2 (1.24)            | 1.15 (1.02)     |
| PD<br>Regression     | 5.74 (2.47)           | 1.16 (1.02)     |
| TBI<br>Regression    | 1.59 (1.31)           | 1.16 (1.02)     |

### **Relative Risk Results**



### **PAF Results: Canada Example**



IHME W UNIVERSITY of WASHINGTON

24

### **Prevalence Results: Canada Example**



NUNIVERSITY of WASHINGTON

### **Outline**

- 1. Overview of the Global Burden of Disease Study
- 2. Case definition for Alzheimer's disease and other dementias
- **3.** Recent results
- 4. Methodological challenges and ongoing work
  - o Diagnostic heterogeneity and challenges related to case definition
  - Data sparsity and improvements using item response theory methods
  - Biases in vital registration data: previous solutions and future improvements



#### **Global Data Coverage**



### **Leverage Information from Aging Surveys**

• Would allow for expanded data availability and global data coverage

IHME

- Currently only include data that does a full diagnostic work-up but this is cost prohibitive and many larger survey series use shorter cognitive instruments
- Information on cognitive impairment and functional limitations may be able to be translated to predictions of dementia



#### HRS and HRS Sister Studies

## Analysis Plan

- Harmonize the cognitive instruments on different surveys of aging
  - Use Item Response Theory Methods: allows for the harmonization of tests that Ο contain a set of common items



- Two factor model incorporates information on both cognition and functional 0 limitations
- 2. Leverage samples with both cognition data and adjudicated dementia diagnosis to develop an algorithm to predict dementia status from other surveys UNIVERSITY of WASHINGTON

### **Initial Results: HRS and ADAMS**







### **Outline**

- 1. Overview of the Global Burden of Disease Study
- 2. Case definition for Alzheimer's disease and other dementias
- **3.** Recent results
- 4. Methodological challenges and ongoing work
  - o Diagnostic heterogeneity and challenges related to case definition
  - Data sparsity and improvements using item response theory methods
  - Biases in vital registration data: previous solutions and future improvements

### **Vital Registration Data**



# Previous Strategy (GBD 2017 and earlier)

- 1. Estimate excess mortality
  - Use initial estimates of prevalence and mortality to determine countries most likely to code deaths to dementia per prevalent case
  - Predict excess mortality by age and sex using data from these countries in the most recent year
- 2. Use these excess mortality estimates and prevalence estimates to predict mortality

#### Limitations:

- We rely heavily on prevalence estimates from sparse heterogeneous data
- The method is sensitive to the choice of how many countries to include
- We do not allow excess mortality to vary over time and location
- We assume the highest observed excess mortality is correct, but there may be over-coding



0.20 -

100

### **New Strategy**



### **Meta-Regression Model on Attributable Risk Data**

- Bayesian framework
- Trimming- outlier detection as part of the likelihood function
- More accurately estimates betweenstudy heterogeneity
- Cubic spline on age with four knots



### **End Stage Proportions: Any Condition**

#### Conditions Included:

- Decubitus ulcer
- Malnutrition
- Muscular Wasting
- Pneumonia
- Dysphagia
- Dehydration
- Hip Fracture
- Sepsis
- Urinary Tract Infection
- Bronchitis
- Septicemia
- Bedridden
- Senility





### **Top Conditions**



### **Example Results**

Finland - Male





● IHME | W UNIVERSITY of WASHINGTON

### **In Conclusion**

- GBD provides a rigorous scientific framework for measuring health loss and making comparisons between different diseases and risk factors
- Dementia is an important contributor to health loss globally, and the burden due to dementia will likely continue to increase with current trends in population growth and population aging
- Because of biases in cause of death data, data sparsity and heterogeneity, the estimation of dementia is subject to a number of critical methodological challenges
- With new GBD updates, there will be ongoing methodological innovation and improvements to global dementia estimates



# Thank you

**Emma Nichols** 

