

Arbovirus vaccines: Dengue, Zika vaccines - Advances and challenges.

Edwin J. Asturias MD

Associate Professor of Pediatrics and Pediatric Infectious Diseases Director for Latin America

Center for Global Health

UNIVERSITY OF COLORADO | COLORADO STATE UNIVERSITY | UNIVERSITY OF NORTHERN COLORADO

colorado school of public health

Dengue: the most common arboviral infection worldwide

Zika infection and outbreaks 1947-2017

Monthly Zika illness case counts reported to the Pan American Health Organization (PAHO) during August 2015 to July 2018

Dengue and its adaptive immunity

Primary DENV infection

Dengue: critical issues for vaccine development

- Four DENV serotypes all capable of causing the full spectrum of disease (*need for a tetravalent vaccine*)
- Life-long homotypic protection afforded after infection but only short term (few months) heterotypic protection is afforded
- Secondary infection with a different serotype is strongly associated with severe disease

Current Live attenuated dengue vaccines

	Dengvaxia (Sanofi Pasteur)	TDV (Takeda)	TV003 (NIH/Butantan)	
Status	Licensed	Phase 3	Phase 3	
# Doses	3 doses over 12 months (0, 6, 12)	2 doses (0, 3 months)	Single dose	
Indicated age	9 - 45	Phase 3 age range 4 - <16 ¹	Phase 3 age range 2 - 59 ²	1. NCT02747927 2. NCT02406729
Other	Seropositive to dengue	?	?	
Construct				DENV-1 DENV-2 DENV-3 DENV-4 YFV

Center for Global Health colorado school of public health Courtesy of Anna Durbin, JHSPH

7

Efficacy¹ of CYD-TDV

Trial	Region	Vaccine recipients enrolled	Age	Overall Efficacy (95% Cl)	Efficacy, hospitalization	Efficacy, severe disease
CYD23 ²	Thailand	2,669	4-11	30.2 (-13.4-56.6)	Not reported	Not reported
CYD14 ³	SE Asia	6,851	2-14	56.5 (43.8-66.4)	67%	80%
CYD15 ⁴	Latin America	13,920	9-16	60.8 (52.0-68.0)	80%	91.7%

- 1. Per protocol analysis. Period of primary efficacy evaluation was > 28 days after the third dose to month 25 (12 month period)
- 2. Sabchareon, The Lancet, 2012
- 3. Capeding et al, The Lancet, 2014
- 4. Villar et al, NEJM, 2014

Risk of Hospitalization for confirmed Dengue and of Severe VCD in subjects 2 to 16 Years of Age in Asia and Latin America (Dengvaxia Phase III)

Serostatus, End Point, and Method	Group	Group	Relative Risk or Hazard	Ratio (95% CI)
	no./to	otal no.		
Seropositive				
Hospitalization for VCD				
MI, month 0 onward	152.4/1816.1	227.5/886.2		0.32 (0.23-0.45)
TMLE, month 0 onward	99.2/1742.3	199.5/846.7	· · · · · · · · · · · · · · · · · · ·	0.25 (0.12-0.53)
NS1, T9, month 13 onward	124/1750	175/822		0.34 (0.26-0.43)
Severe VCD				
MI, month 0 onward	35.1/1816.1	53.4/886.2		0.31 (0.17-0.58)
TMLE, month 0 onward	28.2/1742.3	49.9/846.7	_ _	0.27 (0.15-0.48)
NS1, T9, month 13 onward	31/1750	44/822		0.33 (0.21-0.53)
Seronegative				
Hospitalization for VCD				
MI, month 0 onward	201.6/567.9	62.5/307.8	- -	1.75 (1.14-2.70)
TMLE, month 0 onward	244.0/547.2	65.5/296.8		2.10 (0.94-4.70)
NS1, T9, month 13 onward	187/512	53/272		1.89 (1.35-2.65)
Severe VCD				
MI, month 0 onward	44.9/567.9	8.6/307.8		2.87 (1.09-7.61)
TMLE, month 0 onward	44.6/547.2	9.3/296.8		2.62 (1.03-6.70)
NS1, T9, month 13 onward	37/512	5/272	·	3.93 (1.53-10.10)
			0.01 0.1 1 10	100
Sridhar S. N Engl J Med	2018; 379:32	27-340	Vaccine Better Control Better	er 🕨

Center f

Updated SAGE-WHO review of Dengvaxia

- Overall population level benefit of vaccination remains favorable, but the vaccine performs differently in seropositive versus seronegative individuals.
- There is an increased risk of hospitalized and severe dengue in seronegative individuals starting about 30 months after the first dose.
- In areas of 70% dengue seroprevalence, over a 5-year follow-up:
 - For every 4 severe cases prevented in seropositive, there would be one excess severe case in seronegative per 1,000 vaccinees;
 - For every 13 hospitalizations prevented in seropositive vaccinees, there would be 1 excess hospitalization in seronegative vaccinees per 1,000 vaccinees.

TDV summary (Takeda vaccine)

- Similar GMTs achieved with different regimens
- Better multi-valent seroconversion frequencies with 2 dose regimen in denguenaïve
- RR of dengue = 0.29 in those who received TDV compared with placebo
- Current formulation in Phase 3 clinical trial in Asia and Latin America (dosing: 0 & 3 months)

	Tota I 1794	Grp 1 n=20 0	Grp 2 n=39 8	Grp 3 N=998	Grp 4 N=19 8	
Confirmed dengue cases	30	4	3	14	9	
Serotype recovered						
	DEN- 1	DEN- 2	DEN- 3	DEN- 4	Unk	
# cases	10	11	5	3	1	

All participants were monitored for episodes of febrile illness throughout the study. Within 5 days of fever or febrile illness suspected to be due to dengue infection, blood samples were collected and analyzed for the presence of dengue by RT-PCR or NS1 ELISA

12

Takeda's Dengue Vaccine Candidate Meets Primary Endpoint in Pivotal Phase 3 Efficacy Trial

Cambridge, Mass., and Osaka, Japan, January 29, 2019 – Takeda Pharmaceutical Company Limited [TSE:4502 / NYSE:TAK] ("Takeda") today announced that the pivotal Phase 3 trial of its dengue vaccine candidate met the primary efficacy endpoint. This first analysis of the <u>Tetravalent</u> <u>Immunization against Dengue Efficacy Study (TIDES)</u> trial showed that the company's investigational live-attenuated tetravalent dengue vaccine (TAK-003) was efficacious in preventing dengue fever caused by any of the four serotypes of the virus.

TV003/TV005 – NIH/Butantan vaccine

- Attenuated by deletions in 3⁻ UTR (3 components) and chimerization (1 component)
 - Contains 32 dengue proteins
- TV003 contains 3 log₁₀ PFU of each monovalent component, TV005 contains a 10-fold higher dose of rDEN2/4Δ30
- Asymptomatic rash most common vaccine-associated adverse event (correlated with tetravalent antibody response)
- Viremia detected in ~65% vaccinees (all 4 components detected)
 - HID₅₀ of each component is \leq 10 PFU

Current status and challenges of Dengue vaccines

- Dengvaxia just approved by FDA ACIP to discuss its use in endemic US territories
- First vaccine to potentially need a rapid diagnostic test before administration (major challenge ahead)
- Takeda vaccine results to be denuded soon, will the safety signal be also an issue? Long term data needed
- NIH-Butantan very low dengue incidence in Latin America 2017
 & 2018 delaying efficacy results

Zika immunity and dengue

Experience with other Flavivirus Vaccines

Yellow Fever Vaccine (live-attenuated)

- Effective against 7 genotypes
- Protective titer ≥1:10
- High efficacy rates
- JEV and TBE Vaccines (inactivated virus)
 - Protective titer ≥1:10
 - High efficacy rates

Dengue Vaccines (live recombinant and chimeric)

- Protective titer undefined
- Variable efficacy

Investigational WNV vaccines

- Multiple platforms have been tested
- Correlate of protection undefined

E protein is primary target for neutralizing antibody

ZIKV Vaccine Evaluation

Concept	Vaccine	Antigens	Developer		
Whole-inactivated	Formalin-inactivated	All	Takeda, Walter Reed, Sanofi Pasteur, Valneva		
virus					
	<mark>Chimeric Dengue</mark>	prM-E	NIAID		
Replicating virus	Live-attenuated	All	UTMB by mutation, Codagenix by codon-deoptimization		
	Chimeric Yellow Fever	prM-E	Sanofi Pasteur		
	DNA plasmids	M-E	Beth Israel		
Nucleic acid	<mark>DNA plasmids</mark>	prM-E	NIAID, Inovio		
Gene delivery	mRNA	prM-E	Moderna, UPenn		
	Self-amplifying RNA	prM-E	GlaxoSmithKline		
Vector	VSV Vector	prM-E	Harvard		
Gene delivery	Adenovirus Vector	M-E	Beth Israel (J&J)		
	Measles Vector	prM-E	Institut Pasteur (with Themis)		

Vaccine	Antigen	Induction of NAbs	Short-term protection in mice	Immunoco mpetence	Short-term protection in monkeys	Long-term protection in monkeys	Advanced to clinical trial	Refs
ZPIV	NA	Yes	Yes	Competent	100%	79%	Phase I	<u>66,67,</u> – <u>68</u>
DNA	prM-ENV	Yes	Yes	Competent	100%	29%	Phase II	<u>66,67,68</u> ,– <u>69</u>
Ad	prM-ENV	Yes	Yes	Competent Competent/ deficient	100%	100%	Phase I	<u>67, 68, 70</u>
mRNA	prM-ENV	Yes	Yes	Competent/ deficient Competent	100%	NR	Phase I/II	<u>53, 54</u>
MVA	NS1	Yes	Yes	Competent	NR	NR	Phase I	<u>72</u>
MV	prM-ENV	Yes	NR	NR	NR	NR	Phase I	<u>59</u>
ZIKV-LAV	NA	Yes	Yes	Competent Deficient Competent/ deficient	NR	NR	NA	<u>73,74</u> ,– <u>75</u>

Viremia in vaccinated and control cynomolgus macaques challenged with ZIKV

Medina LO et al Front. Immunol., 2018 | https://doi.org/10.3389/fimmu.2018.02464

colorado school of public health

Center for Global Health

ZIKV DNA Vaccine-Induced Antibody and Protection

Plasma viremia after challenge at gestational day 30

ZIKV DNA Vaccine Development

Estimated cost-effectiveness of a Zika vaccine according to target populations

Challenges ahead for Zika vaccines

- Neutralizing antibodies are likely to be an important immune marker of protection;
- WHO standardization and validation of assays are critical for appropriate assessment of the immune response to Zika vaccine
- Passive transfer studies in animals showing protection against disease, infection, and CZS with human sera useful approximation
- Clinical disease endpoint efficacy studies may be challenging or even infeasible given the current epidemiology of ZIKV;
- Post-licensure studies will be required for all approved ZIKV vaccines: the specific studies will depend on the regulatory pathway, the indication, and vaccine characteristics.