

GENE-ENVIRONMENT INTERACTIONS IN ALZHEIMER'S DISEASE: A PATH TO PRECISION MEDICINE AND PRECISION PUBLIC HEALTH?

JASON R RICHARDSON MS, PHD DABT ATS

PROFESSOR AND ASSOCIATE DEAN FOR RESEARCH

ROBERT STEMPEL SCHOOL OF PUBLIC HEALTH AND SOCIAL WORK

FLORIDA INTERNATIONAL UNIVERSITY

GENETIC FACTORS AND AD

Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease

Sudha Seshadri, MD; Annette L, Fitzpatrick, PhD; M. Arfan Ikram, MD, PhD; Anita L. DeStefano, PhD; Vilmundur Gudnason, MD, PhD; Merce Boada, MD, PhD; Joshua C. Bis, PhD; Albert V. Smith, PhD; Minerva M. Carrasquillo, PhD; Jean Charles Lambert, PhD; Denise Harold, PhD; Elisabeth M. C. Schrijvers, MD; Reposo Ramirez-Lorca, PhD; Stephanie Debette, MD, PhD; W. T. Longstreth Jr, MD; A. Cecile J. W. Janssens, PhD; V. Shane Pankratz, PhD; Jean François Dartigues, PhD; Paul Hollingworth, PhD; Thor Aspelund, PhD; Isabel Hernandez, MD; Alexa Beiser, PhD; Lewis H. Kuller, MD; Peter J. Koudstaal, MD, PhD; Dennis W. Dickson, MD; Christophe Tzourio, MD; Richard Abraham, PhD; Carmen Antunez, MD; Yangchun Du, PhD; Jerome I. Rotter, MD; Yurii S. Aulchenko, PhD; Tamara B. Harris, MD; Ronald C. Petersen, MD; Claudine Berr, MD, PhD; Michael J. Owen, MB, ChB, PhD; Jesus Lopez-Arrieta, MD; Badri N. Vardarajan, MS; James T. Becker, PhD; Fernando Rivadeneira, MD, PhD; Michael A. Nalls, PhD; Neill R. Graff-Radford, MD; Dominique Campion, MD, PhD; Sanford Auerbach, MD; Kenneth Rice, PhD; Albert Hofman, MD, PhD; Palmi V. Jonsson, MD; Helena Schmidt, MD, PhD; Mark Lathrop, PhD; Thomas H. Mosley, PhD; Rhoda Au, PhD; Bruce M. Psaty, MD, PhD; Andre G. Uitterlinden, PhD; Lindsay A. Farrer, PhD; Thomas Lumley, PhD; Agustin Ruiz, MD, PhD; Julie Williams, PhD; Philippe Amouyel, MD, PhD; Steve G. Younkin, PhD; Philip A.Wolf, MD; Lenore J. Launer, PhD; Oscar L. Lopez, MD; Cornelia M. van Duijn, PhD; Monique M. B. Breteler, MD, PhD for the CHARGE, GERAD1. and EADI1 Consortia

Context Genome-wide association studies (GWAS) have recently identified CLU, PICALM, and CR1 as novel genes for late-onset Alzheimer disease (AD).

Objectives To identify and strengthen additional loci associated with AD and confirm these in an independent sample and to examine the contribution of recently identified genes to AD risk prediction in a 3-stage analysis of new and previously published GWAS on more than 35 000 persons (8371 AD cases).

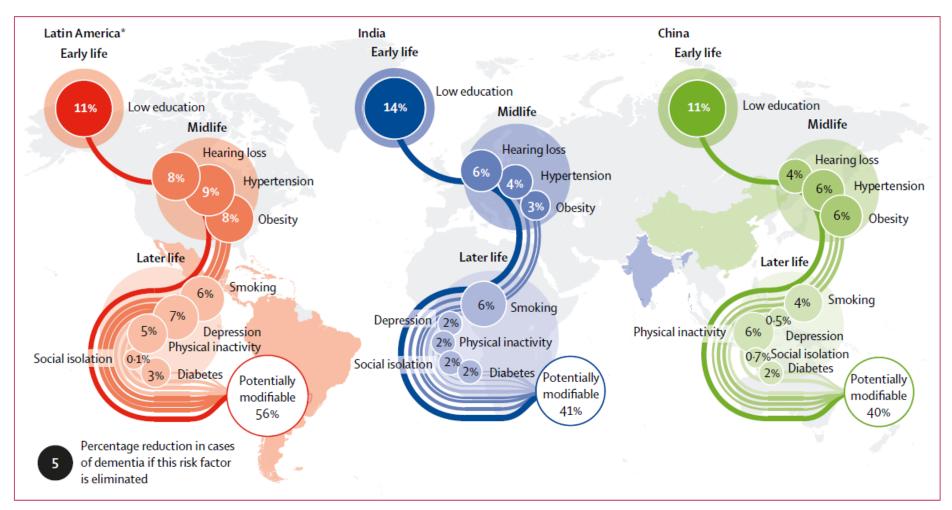
Design, Setting, and Participants In stage 1, we identified strong genetic associations ($P < 10^{-3}$) in a sample of 3006 AD cases and 14 642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (1367 AD cases [973 incident]) with previously reported results from the Translational Genomics Research Institute and the Mayo AD GWAS. We identified 2708 single-nucleotide polymorphisms (SNPs) with $P < 10^{-3}$. In stage 2, we pooled results for these SNPs with the European AD Initiative (2032 cases and 5328 controls) to identify 38 SNPs (10 loc) with $P < 10^{-5}$. In stage 3, we combined data for these 10 loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases and 6995 controls) to identify 4 SNPs with $P < 1.7 \times 10^{-6}$. These 4 SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Genome-wide association analyses were completed in 2007-2008 and the meta-analyses and replication in 2009.

Main Outcome Measure Presence of Alzheimer disease.

Results Two loci were identified to have genome-wide significance for the first time: rs744373 near *BIN1* (odds ratio [OR],1.13; 95% confidence interval [CI],1.06-1.21 per copy of the minor allele; $P=1.59\times10^{-11}$) and rs597668 near *EXOC3L2/BLOC153/ MARK4* (OR, 1.18; 95% CI, 1.07-1.29; $P=6.45\times10^{-9}$). Associations of these 2 loci plus the previously identified loci *CLU* and *PICALM* with AD were confirmed in the Spanish sample (P<.05). However, although *CLU* and *PICALM* were confirmed to be associated with AD in this independent sample, they did not improve the ability of a model that included age, sex, and *APOE* to predict incident AD (improvement in area under the receiver operating characteristic curve from 0.847 to 0.849 in the Rotter-dam Study and 0.702 to 0.705 in the Cardiovascular Health Study).

Conclusions Two genetic loci for AD were found for the first time to reach genomewide statistical significance. These findings were replicated in an independent population. Two recently reported associations were also confirmed. These loci did not improve AD risk prediction. While not clinically useful, they may implicate biological pathways useful for future research.

JAMA. 2010;303(18):1832-1840


www.jama.com

Reaching the Limits of Genome-wide Significance in Alzheimer Disease Back to the Environment

• "Clearly researchers need to pay much more attention to environmental risk and protective factors"

Figure: Population attributable fractions for potentially modifiable risk factors in low-income and middle-income countries *Our data for Latin America include the data for Cuba, Dominican Republic, Mexico, Peru, Puerto Rico, and Venezuela.

ENVIRONMENTAL EXPOSURES AS FACTORS IN AD

723

REVIEW

Occupational risk factors in Alzheimer's disease: a review assessing the quality of published epidemiological studies

Miguel Santibáñez, Francisco Bolumar, Ana M García

Occup Environ Med 2007;64:723-732. doi: 10.1136/oem.2006.028209

Main messages

- Epidemiological literature on Alzheimer's disease and occupational exposures is, in general, scarce.
- Some agents have received most of the attention (pesticides, solvents, electromagnetic fields, lead and aluminium), mostly in case-control studies.
- In general, results are consistent with an increased risk of Alzheimer's disease in relation to occupational exposure to pesticides.

Policy implications

- Protection and surveillance of workers exposed to pesticides should consider the potential risk of Alzheimer's disease.
- Further research, and mostly follow-up studies, can provide more conclusive evidence about this association and other risks from occupational exposures.

ORIGINAL CONTRIBUTION

Elevated Serum Pesticide Levels and Risk of Parkinson Disease

Jason R. Richardson, PhD; Stuart L. Shalat, ScD; Brian Buckley, PhD; Bozena Winnik, PhD; Padraig O'Suilleabhain, MD; Ramon Diaz-Arrastia, MD, PhD; Joan Reisch, PhD; Dwight C. German, PhD

of the patients with PD. The most frequently detected pesticide was p,p'-DDE; it was detected in 36 of 50 patients with PD (72%), in 37 of 43 controls (86%), and in all 20 patients with AD. The levels of p,p'-DDE were not the same in the 3 study groups (Kruskal-Wallis H=21.31; P < .001), and nonparametric multiple comparison tests indicated that the pesticide level was higher in the AD group (median, 5.8 ng/mL; range, 1.29-20.74 ng/mL; mean [SEM], 7.1 [5.4] ng/mL) compared with the control group (median, 1.44 ng/mL; range, 0.2-21.85 ng/mL; mean [SEM], 2.66 [4.0] ng/mL) and the PD group (median, 1.06 ng/mL; range, 0.05-18.56 ng/mL; mean [SEM], 2.4 [4.6] ng/mL), with P < .05 for the 2 post hoc comparisons (**Figure 1**).

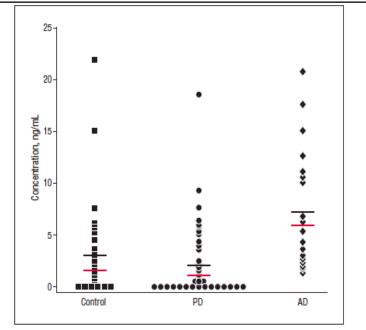
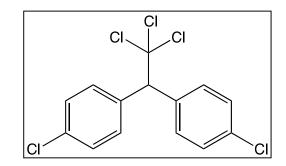


Figure 1. Serum levels of p,p'-DDE are similar in controls and patients with Parkinson disease (PD) but are significantly higher in patients with Alzheimer disease (AD). Black bars indicate the mean values; red bars, the median values.



DDT

- Organochlorine insecticide
- Lipophilic P.O.P.
- Synthesized in 1850s

Insecticidal Properties in 1930s

Synthesized	Application 1940-1972 (U.S.)	Gross Global Production (1940-Present)	Present Annual Production	Banned (U.S.)	Environmental Half Life	Log K _{ow}	LD ₅₀ (mouse, oral)
1847	~1.2x10 ⁹ lbs	~3.6x10 ¹⁰ lbs	~7x10 ⁶ lbs	1972	≤ 30 years	6.91	150-300 mg/kg

 Commercial DDT, a mixture of isomers: *p,p*'-DDT (77%) *o,p*'-DDT (15%) *p,p*'-DDE & DDD (8%)

Insecticidal Mechanism of Action:

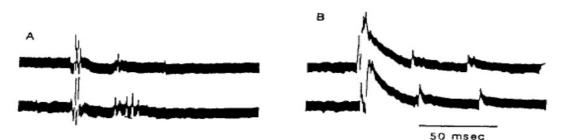


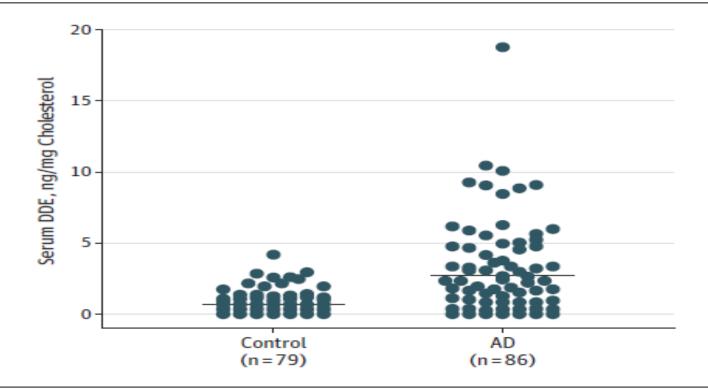
Fig. 1. Postsynaptic responses recorded extracellularly from the abdominal nerve cord of the cockroach as evoked by a presynaptic stimulus applied to the cercal nerve. A, control. B, after application of 28 μ M DDT. Depolarizing after-potential of individual nerve fibers is greatly prolonged. From Yamasaki and Ishii (1952).

Flying and Biting Bugs on Jones Beach Die in a Cloud of DDT, New Insecticide

A truck-mounted fog amerator squirts the poison, minut with all droplets, over a four-mile area of the New York City physroand. Sprand by Army and Nevy planes and by hand sprays, DDT routed dangermin discust-bearing flics and mosquiroes on Pacific blands. Dusted on almost the entire population of Naples, it killed flow and balted a typhus spidemic. DDT has a drawback-mit kills many beneficial and harmless insects, but does not kill all insect pests. Birds and fish which ext large numbers of DDT-poisoned insects may be resulties, too tage 4089.

Research

Original Investigation


Elevated Serum Pesticide Levels and Risk for Alzheimer Disease

Jason R. Richardson, PhD; Ananya Roy, ScD; Stuart L. Shalat, ScD; Richard T. von Stein, PhD; Muhammad M. Hossain, PhD; Brian Buckley, PhD; Marla Gearing, PhD; Allan I. Levey, MD, PhD; Dwight C. German, PhD

DDE LEVELS ARE 4X HIGHER IN AD SAMPLES

Figure 1. Serum Levels of Dichlorodiphenyldichloroethylene (DDE)

Serum levels of DDE are elevated in Alzheimer disease (AD). Data were pooled from University of Texas Southwestern Medical Center and Emory University. Levels of DDE are significantly higher in patients with AD (mean [SEM], 2.64 [0.35]) vs control participants (mean [SEM], 0.69 [0.10]; *P* < .001).

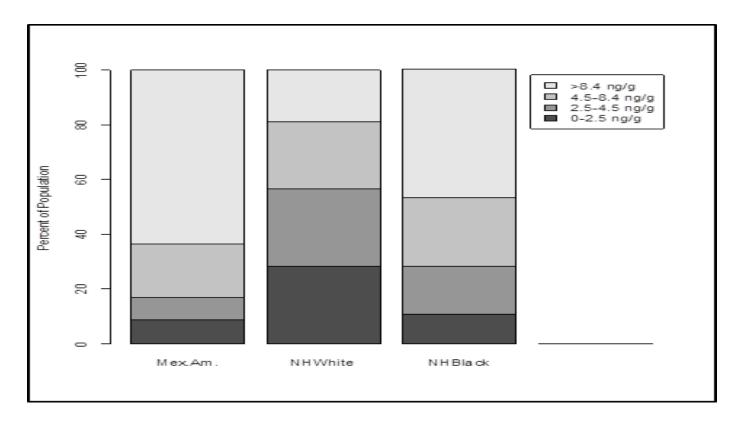
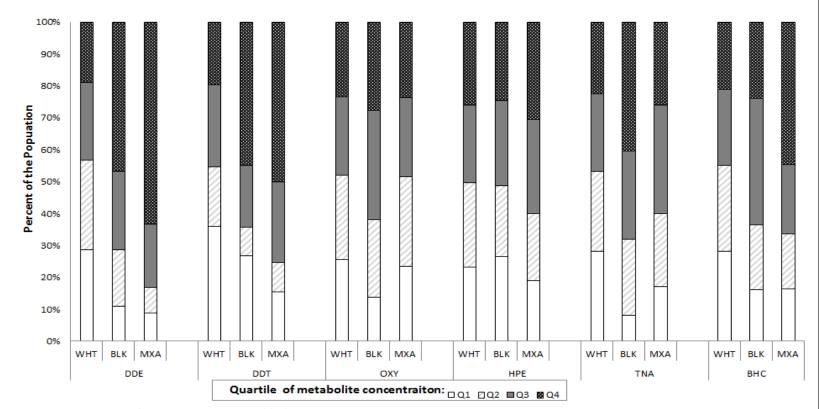

OR FOR AD DIAGNOSIS INCREASED IN TOP TERTILE OF DDE LEVELS

Table 2. Odds of AD per Tertile of DDE Distribution

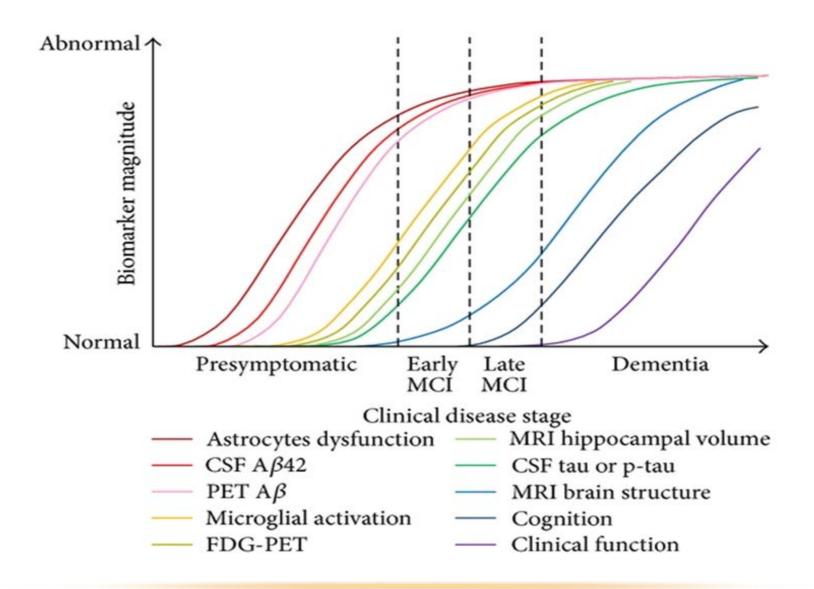
	Serum DDE Le			
Variable	0.09-0.26	0.27-1.64	1.66-18.75	P Value ^a
Odds (95% CI) of AD diagnosis (n = 160)				
Adjusted for age, sex, race/ethnicity, and location	1 [Reference]	0.70 (0.19-2.55)	4.18 (2.54-5.82)	<.001
Adjusted for age, sex, race/ethnicity, location, and covariates ^b	1 [Reference]	0.54 (0.13-2.18)	3.40 (1.70-6.82)	<.001



DDE LEVELS DIFFER BY RACE/ETHNICITY

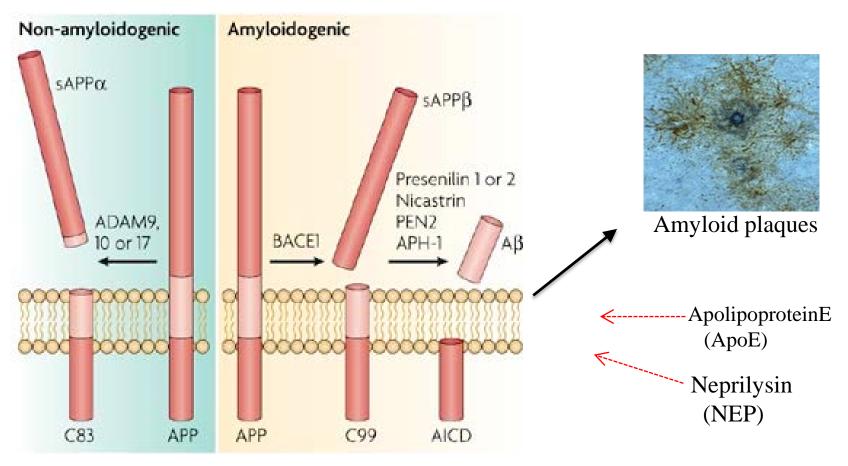
PESTICIDE LEVELS DIFFER BY RACE/ETHNICITY

WHT= Non-Hispanic white,; BLK=Non-Hispanic black; Mex. Am. = Mexican American


 $p,p'-DDT = p,p'-dichlorodiphenyltrichloroethane; p,p'-DDE = p,p'-dichlorodiphenyldichloroethylene; OXY = oxychlordane; HPE = heptachlor epoxide; TNA = trans-nonachlor; BHC = <math>\beta$ -hexachlorocyclohexan

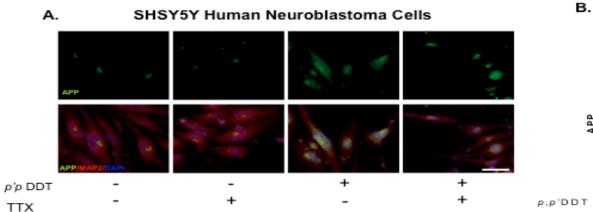
COGNITIVE DYSFUNCTION ASSOCIATED WITH PESTICIDE EXPOSURE DIFFER BY RACE/ETHNICITY

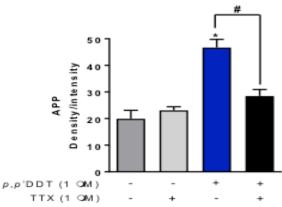
	Mean change in DSST Score per 1 loge Serum Concentration (ng/g)				
- Metabolite	n	Effect (95 % CI ¹)	P-value		
All Subjects ²					
p,p'-DDE	667	1.2 (-0.0, 2.5)	0.0524		
p,p'-DDT	618	-2.2 (-4.0, -0.4)	0.0190		
Oxychlordane	599	-1.5 (-4.2, 1.3)	0.2827		
Heptachlor epoxide	591	-1.9 (-3.6, -0.3)	0.0250		
Trans-nonachlor	658	-1.3 (-4.0, 1.3)	0.3083		
β-hexachlorocyclohexane	654	-0.6 (-1.7, 0.4)	0.2230		
Non-Hispanic White'					
p,p'-DDE	396	1.3 (-0.2, 2.7)	0.0824		
p,p'-DDT	360	-1.8 (-4.2, 0.7)	0.1583		
Oxychlordane	348	-1.4 (-4.5, 1.8)	0.3966		
Heptachlor epoxide	345	-2.0 (-3.8, -0.1)	0.0339		
Trans-nonachlor	392	-1.4 (-4.3, 1.5)	0.3395		
β-hexachlorocyclohexane	390	-0.7 (-1.9, 0.5)	0.2719		
Non-Hispanic Black ³					
p,p'-DDE	87	3.5 (-0.1, 7.1)	0.0505		
p,p'-DDT	79	-0.8 (-3.4, 1.9)	0.5648		
Oxychlordane	76	-1.9 (-7.2, 3.5)	0.4835		
Heptachlor epoxide	74	-1.9 (-5.5, 1.7)	0.2863		
Trans-nonachlor	85	-1.6 (-6.7, 3.5)	0.5313		
β-hexachlorocyclohexane	84	-0.9 (-4.4, 2.5)	0.5947		
Mexican American ³					
p,p'-DDE	142	-1.9 (-3.8, -0.1)	0.0358		
p,p'-DDT	141	-3.3 (-5.5, -1.2)	0.0021		
Oxychlordane	138	-0.4 (-4.7, 3.9)	0.8500		
Heptachlor epoxide	135	-3.1 (-5.6, -0.5)	0.0168		
Trans-nonachlor	140	0.5 (-4.0, 4.9)	0.8359		



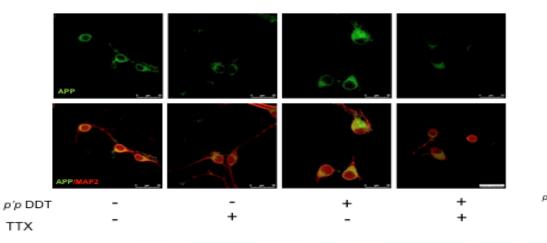
Leclerc and Alburob, 2013

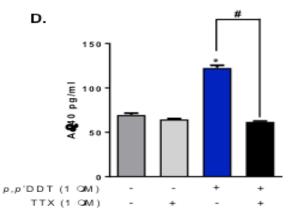
APP proteolysis $\rightarrow A\beta$

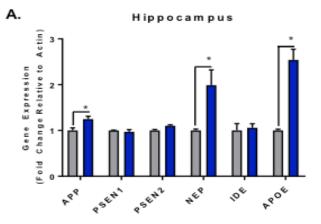


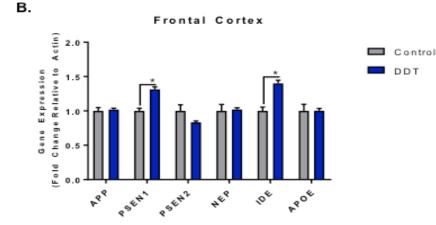

Nature Reviews Neuroscience 8, 499-509 (July 2007)

Metzger, J. Neuropath Mol. Neurol, 1998

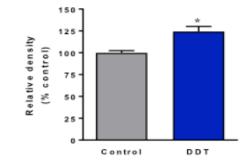


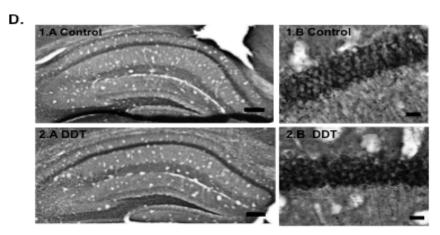

DDT INCREASES APP AND AB SECRETION

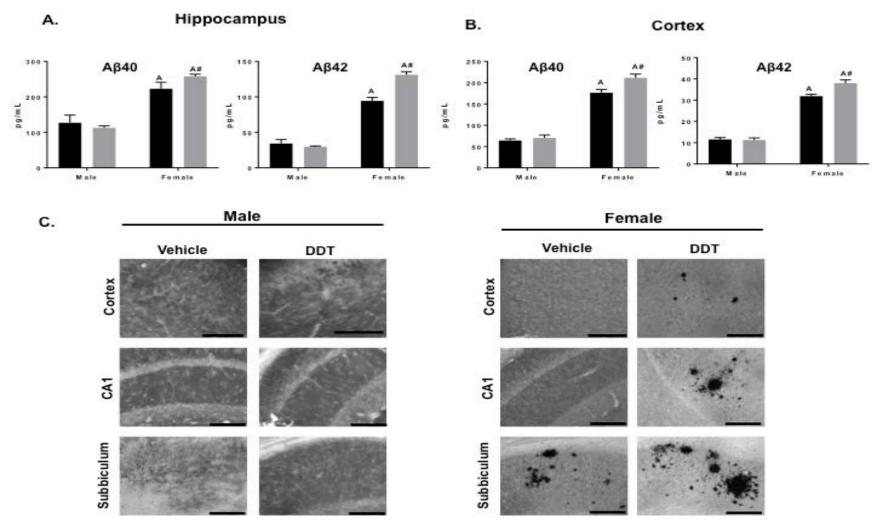

C. C57BL6J Mouse Hippocampal Primary Neurons

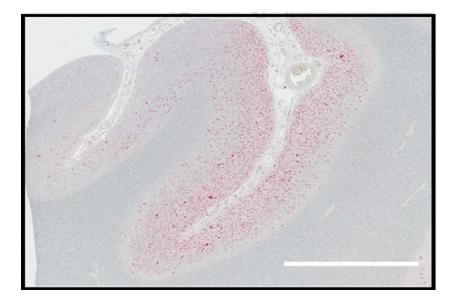


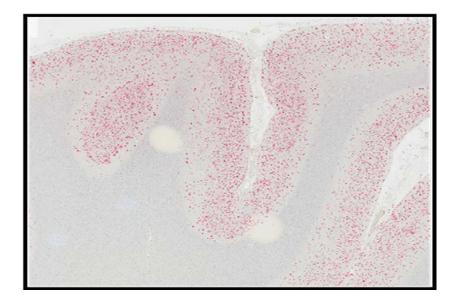




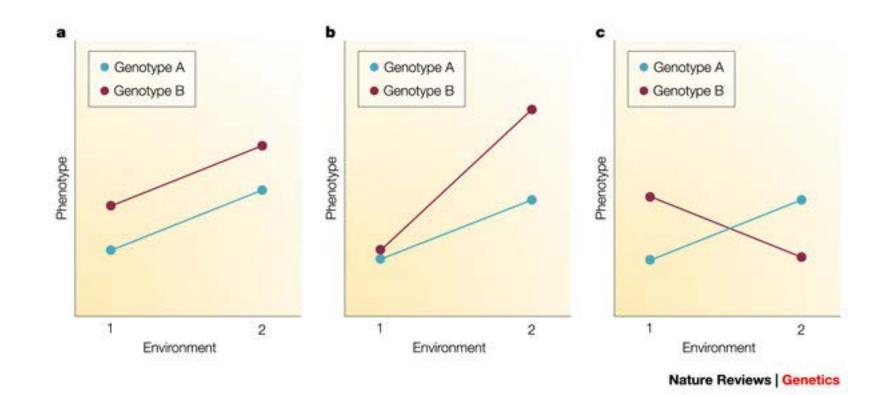

DDT INCREASES AMYLOID-RELATED GENE EXPRESSION AND PROTEIN *IN VIVO*






DDT INCREASES AB42 IN 3XTG MICE

AD BRAIN TISSUE WITH HIGH DDE LEVELS EXHIBIT INCREASED 4G8 STAINING IN THE FRONTAL CORTEX



Low DDE (17.6 ng/g) Female 68 years old High DDE (43.7 ng/g) Female 56 years old

GENE X ENVIRONMENT INTERACTIONS?

FIU FLORIDA INTERNATIONAL UNIVERSITY

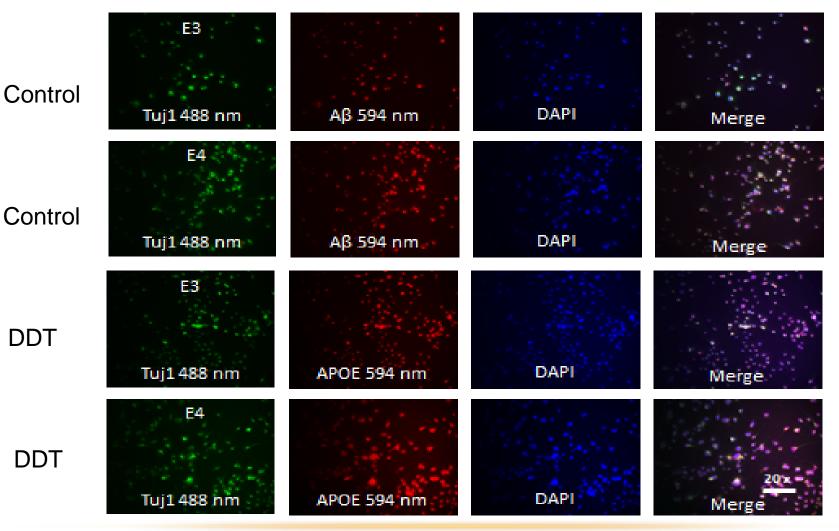
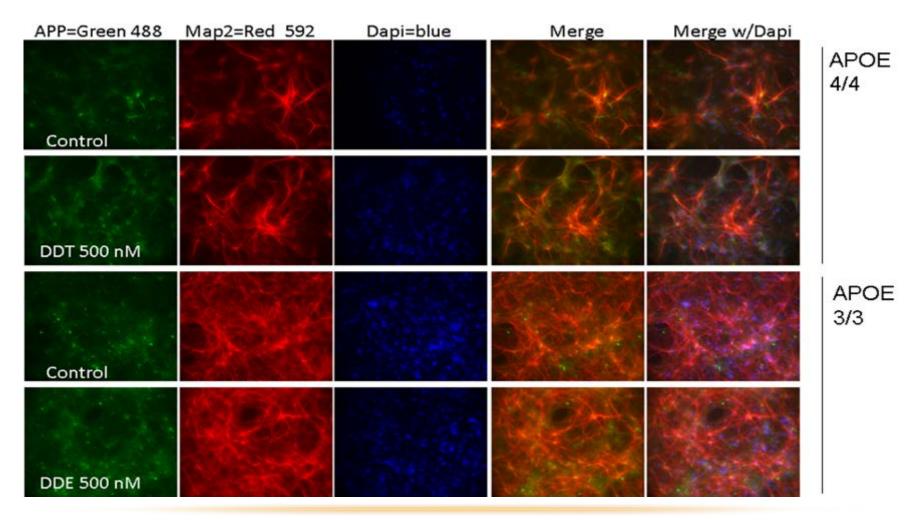

APOE GENOTYPE MODIFIES COGNITIVE EFFECTS OF DDE IN AD

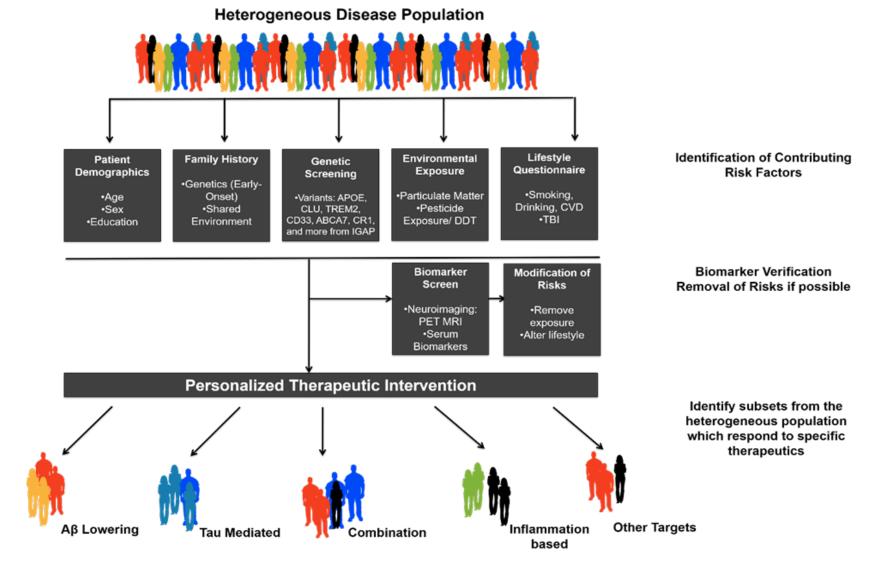
Table 3. APOE4 Polymorphism Modifies the Association Between DDE and MMSE Scores^a

MMSE	β (95% CI)	P Value	P Value for Interaction
Independent effects in main effects model			
DDE (3rd tertile vs 1st tertile)	-0.84 (-1.60 to -0.08)	.03	
APOE4	-3.56 (-4.59 to -2.54)	<.0001	
Effect of DDE by APOE genotype-stratified model			
APOE4	-1.70 (-3.29 to -0.11)	.04	
APOE2/E3	-0.53 (-0.62 to -0.43)	<.0001	.04
Interaction model			
APOE4	-1.80 (-2.30 to -1.28)	<.0001	
APOE2/3	-1.75 (-3.40 to -0.11)	.04	



DDT-APOE4 PRODUCES GREATER AB

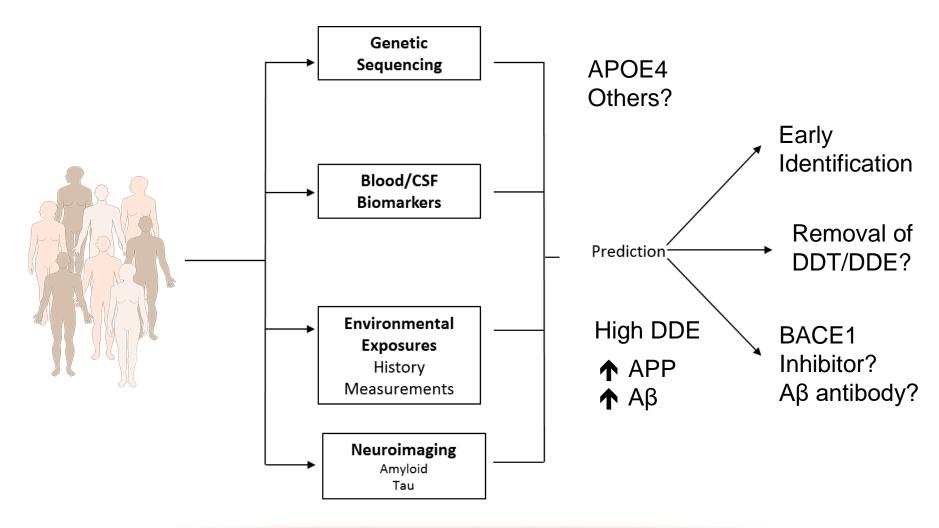
GENOTYPE-SPECIFIC IPSC TO STUDY MECHANISMS


RNASEQ ANALYSIS REVEALS APOE-DDT INTERACTIONS ON COGNITION AND CELLULAR SIGNALING

Male APOE4 DDT vs APOE3 DDT

Downregulated

Ferm name	Term ID	Padj	-log ₁₀ (p _{adj})	
cognition	GO:0050890	7.853×10 ⁻³	· · · · ·	
regulation of transporter activity	GO:0032409	7.853×10 ⁻³		
cell-cell signaling	GO:0007267	7.853×10 ⁻³		
earning or memory	GO:0007611	8.483×10 ⁻³		
equiation of metal ion transport	GO:0010959	8.483×10 ⁻³		
equiation of biological quality	GO:0065008	1.039×10 ⁻²		
equilation of transmembrane transporter activity	GO:0022898	1.118×10 ⁻²		
regulation of ventricular cardiac muscle cell membrane rep	GO:0060307	1.182×10 ⁻²		
regulation of cation channel activity	GO:2001257	1.182×10 ⁻²		
membrane repolarization	GO:0086009	1.182×10 ⁻²		
ventricular cardiac muscle cell membrane repolarization	GO:0099625	1.293×10 ⁻²		
equiation of cation transmembrane transport	GO:1904062	1.293×10 ⁻²		
chemical synaptic transmission	GO:0007268	1.526×10 ⁻²		
anterograde trans-synaptic signaling	GO:0098916	1.526×10 ⁻²		
synaptic signaling	GO:0099536	1.526×10 ⁻²		
rans-synaptic signaling	GO:0099537	1.526×10 ⁻²		
regulation of cardiac muscle cell membrane repolarization	GO:0099623	1.526×10 ⁻²		
ardiac muscle cell action potential	GO:0086001	1.526×10 ⁻²		
equilation of ion transport	GO:0043269	1.526×10 ⁻²		
equilation of heart contraction	GO:0008016	1.526×10 ⁻²		
positive regulation of epithelial cell migration	GO:0010634	1.615×10 ⁻²		
regulation of ion transmembrane transporter activity	GO:0032412	1.615×10 ⁻²		
equilation of cardiac muscle cell action potential	GO:0098901	1.709×10 ⁻²	-	
regulation of action potential	GO:0098900	1.742×10 ⁻²		
ardiac muscle cell membrane repolarization	GO:0099622	1.771×10 ⁻²		
equiation of system process	GO:0044057	1.809×10 ⁻²		
renal system process	GO:0003014	1.809×10 ⁻²		
regulation of membrane repolarization	GO:0060306	2.212×10 ⁻²		
regulation of transport	GO:0051049	2.593×10 ⁻²		
regulation of renal system process	GO:0098801	2.593×10 ⁻²		
nodulation of chemical synaptic transmission	GO:0050804	2.593×10 ⁻²		
regulation of trans-synaptic signaling	GO:0099177	2.593×10 ⁻²		
regulation of ion transmembrane transport	GO:0034765	2.593×10 ⁻²		
behavior	GO:0007610	2.593×10 ⁻²		
alood circulation	GO:0008015	2.593×10 ⁻²		
cellular process	GO:0009987	2.593×10 ⁻²		
neart contraction	GO:0060047	2.593×10 ⁻²		
circulatory system process	GO:0003013	2.693×10 ⁻²		
neart process	GO:0003015	2.898×10 ⁻²	-	
regulation of neuron projection development	GO:0010975	3.078×10 ⁻²		
phosphatidylcholine biosynthetic process	GO:0006656	3.227×10 ⁻²		
ation transport	GO:0006812	3.227×10 ⁻²		
egulation of membrane potential	GO:0042391	3.273×10 ⁻²		
egulation of plasma membrane bounded cell projection or	GO:0120035	3.313×10 ⁻²		
egulation of cell projection organization	GO:0031344	3.793×10 ⁻²		
egulation of blood circulation	GO:1903522	3.894×10 ⁻²	1 i i i i i i i i i i i i i i i i i i i	
action potential	GO:0001508	3.970×10 ⁻²		
negative regulation of cytokine secretion involved in immun	GO:0002740	3.989×10 ⁻²		
positive regulation of cell projection organization	GO:0031346	3.989×10 ⁻²		
operant conditioning	GO:0035106	3.989×10 ⁻²		
phosphate-containing compound metabolic process	GO:0006796	4.966×10 ⁻²		



Eid, Mhatre and Richardson, 2019 Pharmacol Ther in press

FRAMEWORK USING DDT AS A MODEL

OVERALL CONCLUSIONS

- Environmental Factors Play a Role in Neurological Disease and Dysfunction
- Interplay between Genetic Susceptibility and Environment is Likely a Key Mechanism
- Identification of Genetic Susceptibility and Environmental Contributors may Lead to Early Identification
- Understanding Mechanisms May Lead to a Personalized Approach to Prevention/Treatment

ACKNOWLEDGEMENTS

- Dwight German, PhD
- Stuart Shalat ScD
- Brian Buckley PhD
- Allan Levey MD, PhD
- Marla Gearing PhD
- Ananya Roy ScD
- Muhammad Hossain PhD
- Richard von Stein PhD

- Ron Hart PhD
- Angela Tiethof MS
- Judith Graber PhD
- Gerry Harris PhD
- Aseel Eid PhD

Supported by NIEHS, NINDS, and the Michael J Fox Foundation for Parkinson's Disease Research

