Know thy system The 'known knowns' and the 'known unknowns' of VBD

Rebecca Christofferson

May 7, 2019

Dick et al. Am. J. Trop. Med. Hyg. 2012

YEAR 2005 ARGENTINA 26,612 BOLIVIA 84,047 MEXICO 249,763 COLOMBIA 51,543 VENEZUELA 65,569 BRAZIL 528,863

2008

iata.org

Countries, territories and areas showing the distribution of Zika virus, 2013 - 2016

Courtesy of Drs Vicari& Aldighieri, PAHO -Health Emergencies Department

Salje et al. Science. 2017

Vector-borne diseases

- Known unknowns
 - VBD continue to be public health threats what?
 - Interconnectivity of the global population means transmission /introduction is a flight away – where?
 - Urbanization and vector habitat suitability increasing worldwide who?
 - Viral and vector pheno- and genotype diversity can be high how?
 - Affects control efforts and efficacy testing of such why?

Known Knowns and Known Unknowns

- 1977 meeting in SE Asia to discuss DENV research
- 2019 meeting in SE Asia to discuss DENV and other VBD research

Vector-borne diseases

- One of the focuses of my lab:
 - Extrinsic and intrinsic factors that affect transmission and risk of arbovirus (more broadly, VBD) infections. Specifically:
 - vector:virus interactions
 - vector:host interactions

Vectorial capacity

Anderson, J.T., R., Rico-Hesse. 2006. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. American Journal of Tropical Medicine and Hygiene. 75(5):886-892

Vectorial capacity

- 1. Vector competence/ EIP
- 2. Mosquito mortality
- 3. Biting Rate

Question: What is the interplay between virus:vector kinetics and vector life traits?

- Affected mosquitoes at different day-postemergence
- Difference in EIP50 among age groups?
- Difference in mortality between infected/uninfected?

Mortality & Vector competence

• Average time to death ~ 25 days

Treatment	dpi (Age)	% Transmission (n)
ΖΙΚΥ	5 (10)	0 (10)
	8 (13)	0 (10)
	11 (16)	10 (10)
	12 (17)	10 (10)
	15 (20)	10 (10)
	18 (23)	60 (10)
	23 (28)	60 (10)
M.ZIKV	5 (17)	0 (10)
	8 (20)	0 (10)
	11 (23)	0 (10)
	16 (28)	0 (10)
S.ZIKV	5 (17)	0 (10)
	8 (20)	0 (10)
	11 (23)	10 (10)
	16 (28)	0 (10)

- No differences observed in EIP among treatments
- EIP₅₀ ~ 18 days

Biting rate

- No differences among treatments
- Apparent age effect

Age-structured vectorial capacity equation

$$VC_{age} = \frac{m(z_{age}a_{age} * z_i a_i)b\prod_{1}^{i} p_i}{-\ln(p_{age})}$$

Age-structured vectorial capacity equation

Age-structured vectorial capacity equation

SCIENTIFIC REPORTS

OPEN First report on the application of near-infrared spectroscopy to predict the age of *Aedes albopictus* Skuse

Received: 27 October 2017 Accepted: 12 June 2018 Published online: 25 June 2018

Maggy T. Sikulu-Lord 31,2, Gregor J. Devine¹, Leon E. Hugo¹ & Floyd E. Dowell

Check for updates

METHOD ARTICLE

Prediction of mosquito species and population age structure using mid-infrared spectroscopy and supervised machine learning [version 1; peer review: awaiting peer review]

Mario González Jiménez (D^{1*}, Simon A. Babayan^{2*}, Pegah Khazaeli¹, Margaret Doyle², Finlay Walton (D¹, Elliott Reedy¹, Thomas Glew¹, Mafalda Viana², Lisa Ranford-Cartwright (D², Abdoulaye Niang³, Doreen J. Siria⁴, Fredros O. Okumu (D^{2,4}, Abdoulaye Diabaté³, Heather M.

Ferguson², 🔀 Francesco Baldini 🍺², 🔀 Klaas Wynne 🍺¹

Vector-borne diseases

How will climate change add to the unknown?

@ FOLLOW & SHARE

The Intergovernmental Panel on Climate Change _____

The Intergovernmental Panel on Climate Change (IPCC) is the United Nations body for assessing the science related to climate change.

Climate change and DENV transmission

Climate change and DENV transmission

Climate change and transmission +1 °C +2 °C (A) Miami (B) Los Angeles (C) San Juan 1500 0.06 1500 within one year of initial introduction 1000 0.04 1000 cumulative reported incidence 0.02 500 500 0 0 0 Feb May Aug Nov Feb May Aug Nov Feb May Aug Nov (F) El Paso (D) Atlanta (E) New Orleans 1500 1500 100 1000 1000 50 500 500 0 0 0 Feb May Aug Nov Feb May Aug Nov Feb May Aug Nov time of initial introduction

Climate change and transmission

Climate change and transmission

- Assumptions (selected):
 - No phenotypic diversity in either mosquito or virus
 - Biting Rate not age-specific
 - No age-structure in the model
- Meaning:
 - We have an idea of what could happen

Climate Change

• Other effects

PLOS NEGLECTED TROPICAL DISEASES

RESEARCH ARTICLE Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions

Perran A. Rosso¹*, Scott A. Ritchie^{2,3}, Jason K. Axford¹, Ary A. Hoffmann¹

Tropical Medicine and Infectious Disease

Article

Cross-Generational Effects of Heat Stress on Fitness and Wolbachia Density in Aedes aegypti Mosquitoes

Isabelle Jia-Hui Foo^{1,2}, Ary A. Hoffmann² and Perran A. Ross^{2,*}

Summary

- What do we know?
 - We know what the threats are
 - We know (some of) the drivers of risk
 - We know the challenges

- What do we know we do not know?
 - Actual transmission rates
 - Nuances of effectors
 - Technicalities of how to address

Summary

- Unknown unknowns
 - The one everybody wants to know: What's next?

By Susan Scutti, CNN () Updated 12:27 PM ET, Mon March 12, 2018

Orthobunyaviruses in RVFV negative samples

*all cases of hemorrhagic fever were fatal

Thank you:

- Lab Members
- E. Handly Mayton
- M. Fausta Dutuze
- Kelly Hughes
- Christine S. Walsh
- A. Ryan Tramonte
- Austin Barnes
- Lab Spouses: Mark, Pete, Jean, Matt, Lauren

Funding and support:

CENTER FOR COMPUTATION & TECHNOLOGY

Handly Mayton

Dr. Michael Robert University of the Sciences

Dr. Helen Wearing University of New Mexico

```
Rebecca C. Christofferson
rcarri1@lsu.edu
@RC_Epi y
```